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SUMMARY

In this paper a multivariate frailty model is suggested that can be used in the genetic analysis of the
ageing process as a whole, simpli�ed to consisting of the states ‘healthy’, ‘disabled’ and ‘deceased’.
The model allows us to evaluate simultaneously the relative magnitude of genetic and environmental
in�uences on frailty variables corresponding to the period of good health and to the life span. The
frailty variables can be interpreted as susceptibility to illness or death. The model can be applied to
data on groups of related individuals (twins, siblings, a litter). One of the major advantages of this
model is that it allows one to include groups of individuals where some or all members of the group
are already deceased at the time of observation. The current health status of the living individuals
and the exact life span of individuals who are already deceased is the only information necessary for
the application of the model. Questions concerning the identi�ability of the model based on current
health status data and estimation strategies are discussed in the context of specifying the model for
twins. Finally, the results of a sample analysis of twin data on prostate cancer are presented. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ageing is a very complex process which is in�uenced by a lot of factors such as health and
living circumstances. There is much variation among individuals in this process. To analyse the
relative importance of di�erent factors such as genes and the environment, an interdisciplinary
approach can be helpful.
On the one hand, demographers investigate empirically the mortality pattern of populations,

recent trends in mortality, and life expectancy. On the other hand, genetic epidemiologists
analyse statistically the association between genes and certain diseases.
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However, to study the role of genes in the ageing process one needs to deal with both
mortality data and health information, since one can look at the process from di�erent points
of view. One can be interested in a quantitative description of ageing, which means studying
its duration or life expectancy, or one can ask about the quality of this process and thus treat
questions about health and disability.
An approach is needed that merges the methods of demography with those of genetic

epidemiology. Moreover, this approach must take into account the structure of the data that
are available. There is both demographic information about life span and information about
di�erent diseases and=or health status. To address questions about the in�uence of genes one
usually uses data on relatives, such as twins, for example.
From a mathematical point of view it follows that one must deal with:

(i) methods of survival analysis, since life span information is usually censored;
(ii) methods of quantitative genetics to estimate genetic parameters such as heritability;
(iii) a model of the ageing process of related individuals.

For the genetic analysis of life span a bivariate correlated frailty model was successfully
applied on Danish twin survival data [1]. This model combines the ideas of survival analysis
and demography with those of genetic epidemiology. In this approach it is not the genetic
parameters of life span that are estimated but those of an unobserved variable called frailty.
Frailty represents the individual susceptibility to disease and death. The estimated heritability
of frailty was 50 per cent. The properties of this model are discussed in Yashin et al. [2].
In order to generalize the bivariate correlated frailty model for a description of the entire

ageing process, we introduce in this paper an additional frailty variable for each individual,
which represents susceptibility to disease or disability. This leads in the case of twins to a
four-dimensional correlated frailty model, thereby simplifying the ageing process to a process
consisting of the three states healthy, ill or disabled and deceased.
The model for the ageing process as a whole that we introduce in this paper allows for a

simultaneous consideration of genetic and environmental in�uences on ‘disease susceptibility’
and ‘longevity’. The advantage over a separate analysis is the type of data one can use in the
new model. It is possible to include groups of individuals with some or all members deceased
at the time of observation. In an analysis that only examines disease status such groups would
be excluded.
We illustrate our methods with an example in Section 4. It uses data on prostate cancer

incidence in male Swedish twins. We wish to establish the relative importance of genetic and
environmental in�uences on the development of prostate cancer and on life span in general.

2. FRAILTY MODELS AND THEIR APPLICATIONS

The notion of frailty as a measure of general susceptibility to all causes of death was intro-
duced to describe mortality in heterogeneous populations [3]. If T is the life span then the
conditional survival function of T given frailty Z is

S(x|Z)= exp
{
−
∫ x

0
�(u; Z) du

}
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where � is the conditional hazard function. Usually a proportional hazard model �(x; Z)=
Z�0(x) is used. Then the unconditional survival function of T is

S(x)=p
(∫ x

0
�0(u) du

)
=p(H (x))

where H (x) is the cumulative hazard function and p the Laplace transform of Z .
To make such a univariate frailty model identi�able one has to make assumptions concern-

ing the parametric structure of the underlying hazard rate �0. A bivariate correlated gamma
frailty model does not have this disadvantage [2].
If T1 and T2 are the life spans of two related persons and Hi(x)=

∫ x
0 �i(u) du and Zi; i=1; 2,

are the corresponding cumulative hazard rates and frailty variables, respectively, then one gets
for the conditional bivariate survival function of (T1; T2) given (Z1; Z2)

S(x1; x2|Z1; Z2)= exp{−Z1H1(x1)− Z2H2(x2)}
if one assumes a proportional hazard model and conditional independence of the life spans
given the frailty variables.
Yashin et al. [2] use an additive decomposition of the frailty variables into the sum of inde-

pendent gamma distributed variables to construct a bivariate frailty distribution. The resulting
bivariate unconditional survival function can be represented in two di�erent ways:

S(x; y) = [1 + �21H1(x)]
%
�1�2

− 1
�21 [1 + �22H2(y)]

%
�1�2

− 1
�22 [1 + �21H1(x) + �

2
2H2(y)]

− %
�1�2

= [S1(x)]
1− �1

�2
% [S2(y)]

1− �2
�1
% [S−�

2
1

1 (x) + S−�
2
2

2 (y)− 1]−
%
�1�2

where S1 and S2 are the marginal univariate survival functions. �2i is the variance of Zi and
% the correlation between the frailty variables.
The second representation of the survival function makes possible a semi-parametric ap-

proach to the estimation of the parameters of the bivariate frailty distribution if one uses a
non-parametric estimate for the marginal univariate survival functions [2].
One of the main advantages of the correlated frailty model is that it allows for a joint anal-

ysis of data on monozygotic and dizygotic twins and therefore an estimation of the heritability
of frailty. For such an analysis one has to assume that the twins in a pair and monozygotic
and dizygotic twin individuals all have the same mortality pattern, that is, equal frailty vari-
ances and univariate survival functions. This assumption can be tested, for example, with a
likelihood ratio test. It is also possible to compare di�erent genetic models for frailty [4].
According to the Akaike information criterion (AIC), a genetic model consisting only of ad-

ditive genetic and non-shared environmental components was the best �tting in the application
of such an analysis to Danish twin data [1].

3. THE FOUR-DIMENSIONAL MODEL

3.1. Construction of the model

Let us now look at the ageing process as a whole and simplify it to a process consisting
of the three states ‘healthy’, ‘ill’, and ‘deceased’. The ageing of an individual can then be
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Figure 1. Four-dimensional correlated frailty model for a twin pair.

described by the time he stays in a ‘healthy’ state and the life span. If there is an underlying
unobservable frailty variable corresponding to each of these times, then one represents factors
that in�uence susceptibility to disease and the other represents factors that change individual
chances of survival.
The ageing of a twin pair can be described in this way by a four-dimensional correlated

frailty model. Figure 1 illustrates such a model. Ti0; i=1; 2, is the time spent in a healthy state
and Ti; i=1; 2, the life span of twin i. The frailty variables Zi0 and Zi; i=1; 2, correspond to
these time periods, respectively. We assumed that it makes no di�erence whether a twin is
the �rst or the second in a pair. Therefore the bivariate distributions of (T10; T1) and (T20; T2)
are equal.
Let S0 and SL denote the univariate survival functions of Ti0; i=1; 2, and Ti; i=1; 2,

respectively. SL(x) is the probability of surviving to age x and S0(x) is the probability of
still being healthy at age x. A proportional hazard model with underlying hazard rate �0 and
cumulative hazard rate H0 is assumed for the conditional survival function of Ti0 given Zi0.
The conditional survival function of Ti given Zi is de�ned similarly, with underlying hazard
rate � and cumulative hazard rate H :

P(Ti0¿x|Zi0) = exp
{
−Zi0

∫ x

0
�0(u) du

}
= exp{−Zi0H0(x)}

P(Ti¿x|Zi) = exp
{
−Zi

∫ x

0
�(u) du

}
= exp{−ZiH (x)}

It is assumed that the times Ti0; i=1; 2, and Ti; i=1; 2, are conditionally independent given
the frailties:

P(T10¿x1; T20¿x2; T1¿y1; T2¿y2|Z10; Z20; Z1; Z2)
=P(T10¿x1|Z10)P(T20¿x2|Z20)P(T1¿y1|Z1)P(T2¿y2|Z2)
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Figure 2. Correlation structure of the four-dimensional frailty distribution.

This assumption means that all genetic in�uence on the times Ti0 and Ti is expressed by the
frailty variables.
To calculate the unconditional survival function S of (T10; T20; T1; T2) one has to specify

the distribution of (Z10; Z20; Z1; Z2), or more precisely, the Laplace transform of this random
vector.
The frailty variables are assumed to be gamma distributed with mean value 1, variances

�20 =var(Zi0), �2=var(Zi) and correlations %0=corr(Z10; Z20), %1=corr(Z1; Z2), %=
corr(Zi0; Zi), %∗=corr(Z10; Z2)=corr(Z20; Z1). Figure 2 illustrates the resulting correlation
structure.
To construct the joint distribution of the four frailty variables one can represent them as

the sum of independent gamma-distributed random variables. The aim of such a construction
is to achieve a wide range of possible dependence structures, that is, a large permissible range
for the correlations. The correlations %0 and %1 are of special interest for the analysis since
with their values for monozygotic and dizygotic twins one can calculate the heritabilities of
the frailty in becoming ill and of the frailty in life span.
Each frailty is decomposed into the sum of four independent gamma-distributed random

variables. There is one common summand for all four frailty variables, one common sum-
mand for each state and one for each twin, and an individual summand for each frailty.
Thus

Z10 = �20 (Y0 + Y1 + Y3 + Y10) Z1=�2(Y0 + Y1 + Y4 + Y11)

Z20 = �20 (Y0 + Y2 + Y3 + Y20) Z2=�2(Y0 + Y2 + Y4 + Y21)

where the Yi and Yij are pairwise independent gamma-distributed random variables with the
scale parameter 1 and di�erent shape parameters:

Y1 ∼ �(k1; 1); Y2∼�(k1; 1); Yi∼�(ki; 1); i=0; 3; 4
Yi0 ∼ �(k10; 1); i=1; 2; Yi1∼�(k11; 1); i=1; 2

There is a one-to-one correspondence between the shape parameters ki, kij and the variances
and correlations of the frailty variables. Since the shape parameters must be positive one gets
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the following constraints on the variances and correlations:

0¡%∗¡%¡min
(
�0
�
;
�
�0

)

%∗
�0
�
¡%0¡1− (%− %∗)�0�

%∗
�
�0
¡%1¡1− (%− %∗) ��0

These constraints can be serious limitations if the variances of the frailties �0 and � di�er sig-
ni�cantly or if the correlations between the frailties of one person (%) or between the frailties
for di�erent states of di�erent persons (%∗) are large. If �0 and � are of the same magni-
tude and % and %∗ are small, then one gets acceptable permissible ranges for the correlations
between the frailty variables of the same health state for di�erent twins (%0, %1).
Similarly to the bivariate correlated frailty model, the unconditional survival function of

(T10; T20; T1; T2) can be expressed in two di�erent ways:

S(x1; x2; y1; y2) = [S0(x1)S0(x2)]1−%0−(%−%
∗) �0� [SL(y1)SL(y2)]

1−%1−(%−%∗) ��0

×[(S−�200 (x1) + S−�
2

L (y1)− 1)(S−�
2
0

0 (x2) + S−�
2

L (y2)− 1)]−
%−%∗
�0�

×[S−�200 (x1) + S
−�20
0 (x2)− 1]

− %0
�20
+
%∗

�0� [S−�
2

L (y1) + S−�
2

L (y2)− 1]−
%1
�2 +

%∗

�0�

×[S−�200 (x1) + S
−�20
0 (x2) + S−�

2

L (y1) + S−�
2

L (y2)− 3]−
%∗

�0�

= [(1 + �20H0(x1))(1 + �
2
0H0(x2))]

− 1−%0
�20

+
%−%∗
�0�

×[(1 + �2H (y1))(1 + �2H (y2))]−
1−%1
�2 +

%−%∗
�0�

×[(1 + �20H0(x1) + �2H (y1))(1 + �20H0(x2) + �2H (y2))]−
%−%∗
�0�

×[1 + �20H0(x1) + �20H0(x2)]
− %0
�20
+
%∗

�0� [1 + �2H (y1) + �2H (y2)]
− %1
�2 +

%∗

�0�

×[1 + �0H0(x1) + �20H0(x2) + �2H (y1) + �2H (y2)]−
%∗

�0� (1)

The �rst representation could be called semi-parametric since it shows the functional depen-
dence of the survival function S on the marginal univariate survival functions, which may
be estimated parametrically or non-parametrically from univariate survival data. The second
representation, on the other hand, could be called parametric, since it shows the dependence
of the survival function on the underlying hazard rates. These rates cannot be estimated either
parametrically or non-parametrically from univariate survival data. The �rst representation is
to be preferred for the statistical analysis of data since it allows us to avoid unjusti�able
assumptions about the parametric form of the underlying hazard.
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A model for the description of the ageing and survival processes of more than two related
individuals can be constructed in a completely analogous manner.

3.2. Identi�ability of the model

If one has uncensored observations of the times (T10; T20; T1; T2) then the identi�ability of the
model follows directly from that of the bivariate correlated frailty model, since all marginal
bivariate survival functions correspond to this model. The identi�ability of the bivariate model
has been proven by Iachine and Yashin [5]. To assume that one can get such types of
observation in reality is very unrealistic. It can be shown that a more realistic pattern of
censored observations is su�cient for the identi�ability of the model.
Let us assume that one has carried out a cross-sectional study where one examined the

health state of twin pairs. Assume further that it is possible to obtain from a population
registry the exact life span of twins of the same birth cohorts as the observed ones who have
already died.
If A is the age of a twin pair at the time of observation, Ti0 is the time spent in a healthy

state and Ti is the life span of twin i, then one can observe for every twin in a pair the
current health state

Ci=



0 if the twin is healthy ⇔ Ti0¿A and Ti¿A

1 if the twin is ill ⇔ Ti06A and Ti¿A

2 if the twin is deceased ⇔ Ti6A

and the censored life span

Xi= min(Ti; A) i=1; 2

The observation for a twin pair is the vector (X1; X2; C1; C2). X1 and X2 are positive real
numbers, C1 and C2 can take the value 0, 1 or 2.
The following proposition holds:

Proposition 3.1
Let A have a positive density function on an interval [a; b] and let it be independent of
Ti0; i=1; 2, and Ti; i=1; 2. If there exists at least one value x in [a; b] for which it holds
that 0¡SL(x)¡1, S ′L(x)¡0 and 0¡S0(x)¡1 and if for all c with 0¡c¡1 there is at least
one x∈[a; b] such that

S−�
2

L (x) �= S−�
2
0

0 (x)− 1
S−c�

2
0

0 (x)− 1
(2)

then the model corresponding to (1) is identi�able with the help of the observations (X1; X2;
C1; C2).
This means that the parameters of the model %0, %1, %, %∗, �0 and � and all values of

the univariate survival functions on [a; b] with 0¡S0(x)¡1, 0¡SL(x)¡1 and S ′L(x)¡0 are
uniquely determined.

The following remark shows that condition (2) is not very restrictive. Furthermore, it con-
tains only analytical causes in the proof of Proposition 3:1.
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Remark 3.2
If a=0, that is, A is distributed on an interval [0; b], and S0(x)¡1 for all x¿0 then (2) is
always ful�lled.

Remark 3.3
Since current health status data on two individuals are su�cient for the identi�ability of the
model, a model that describes the ageing of more than two individuals is obviously also
identi�able with the help of current health status data.

A sketch of the proof of Proposition 3:1 is given in the Appendix.

3.3. Estimation strategies

For censored observations in the four-dimensional correlated gamma frailty model as described
above, the log-likelihood function can be expressed as a function depending on the parame-
ters of the four-dimensional frailty distribution �0, �, �0, �1, � and �∗ and the values of the
univariate survival functions S0 and SL. The proof of identi�ability shows that the univariate
survival functions can be identi�ed non-parametrically, that is, without any parametric speci-
�cation. This property opens up di�erent possibilities for the estimation of the parameters in
the model and also provides us with the opportunity to evaluate the �t of the model.
On the one hand, one can choose a parametric speci�cation for the univariate survival

functions.
For the life span of every individual one has censored information where the age at the time

of observation A is the censoring variable. On the other hand, therefore, one can calculate
the Kaplan–Meier estimator for the univariate survival function SL from the data. One can
use the values of this non-parametric estimator in the log-likelihood function and choose a
parametric speci�cation for the function S0. This approach could be called a partly semi-
parametric estimation strategy for the model.
It is important to keep in mind that the standard errors that one would get with traditional

methods using this semi-parametric approach do not include the error that is created by using a
non-parametric estimator for SL. Therefore one has to use other methods such as, for example,
a bootstrap approach to get standard errors of the parameter estimates.
Using a fully parametric approach has the advantage that there exist well-known theoretical

results about the asymptotic distribution of the estimators. Thus standard errors can be derived
directly. The disadvantage is the higher number of parameters that have to be estimated
simultaneously and, of course, one makes restrictions on the form of the survival function.
A semi-parametric approach does not make such restrictions, but it does require additional
computational e�orts to calculate the non-parametric estimate. To get standard errors for the
estimators is not straightforward, and it is usually also computationally demanding.
If the parameter estimates from this semi-parametric approach and a fully parametric

approach di�er substantially, this can be a hint that the chosen parametric speci�cation for SL
is inappropriate.

3.4. Properties and limitations

The four-dimensional correlated frailty model has several advantages and useful properties.
One of its major advantages is that in a scenario like the one described above it is possible to
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include the information on broken pairs (these are twin pairs where one twin is deceased at the
time of observation) and on pairs where both members are already deceased. This increases
the sample size and therefore the accuracy of parameter estimates. Traditional methods would
ignore the information about such pairs.
The possibility of using a non-parametric estimator for the survival function SL, thus avoid-

ing any parametric speci�cation of this function, makes the model �exible.
The information that is needed to identify the model is quite easily available. Only the

current health status of the individuals has to be known, not the age at onset of disease or
disability. It is quite di�cult to obtain the latter information for most diseases and sometimes
even impossible to de�ne it.
The model enables us to combine data on monozygotic and dizygotic twins in the analysis,

thus allowing for the application of methods of quantitative genetics. That is, it is possible
to estimate the heritability of the frailty in becoming ill and that of the frailty in dying
simultaneously. In addition, one can compare di�erent genetic models in order to explore the
nature of genetic in�uences, that is, to compare additive and non-additive genetic factors or
investigate the role of the shared environment.
The analytic form of the likelihood function is known, so traditional estimation methods

(for example, maximum likelihood estimation) can be used. Censored and truncated data
can be included in the analysis. Although this three-state model is still highly simpli�ed, it
provides more complex insight into the ageing process as a whole, since it combines di�erent
types of information – medical data about the health status and demographic data about
mortality.
It is especially useful to investigate whether the in�uence of genes on the age at death is

a confounder for the disease status relationship in a twin pair. This is an advantage over the
traditional method of estimating the correlation in liability to the development of a certain
disease.
Of course the model has also disadvantages which may present serious limitations in prac-

tical applications. First of all, there are constraints on the parameters of the four-dimensional
frailty distribution, especially on the correlations between the frailty variables. This restricts
the range of possible dependence structures between the times Ti0 and Ti, which describe
the ageing process. This could make the �tting of the model to real data nearly
impossible.
In practice, the estimation of the model parameters can face some problems. The model is

quite complex. In addition to the parameters of the four-dimensional frailty distribution, one
has to choose a parametric speci�cation for univariate survival functions or underlying hazard
rates. The number of parameters is therefore quite large, which can create computational
di�culties in the estimation process.
Moreover, the sample size in twin studies is usually relatively small, which will yield

large standard errors for the parameter estimates, and the proportion of ill or disabled
persons is also often small. This will lead to large standard errors for the parameters
belonging to the transition from a healthy to an ill state, thus making the estimation of
these parameters di�cult. Nevertheless, the model was successfully applied to a data
set on Swedish twins (see Section 4). A detailed simulation study could bring some
knowledge about the sample size and the proportions of a�ected individuals that are
necessary to get satisfactory estimation results in the four-dimensional correlated frailty
model.
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Table I. Proportion of pairs with no twin, one twin or two twins a�ected.

Zygosity No twin One twin Both twins Total
with diagonis with diagonis with diagonis

MZ 1446 177 26 1649
87.7% 10.7% 1.6% 100%

DZ 2602 367 14 2983
87.2% 12.3% 0.5% 100%

4. APPLICATION TO PROSTATE CANCER DATA

4.1. Data

We tested the applicability of the four-dimensional correlated frailty model with data on
prostate cancer in male Swedish twins. The data set was created by merging the Swedish
Twin Registry with the Swedish Cancer Registry. The twin pairs come from the old Swedish
Twin Registry, which includes the birth cohorts from 1886 to 1925. The data is left-truncated
since both twins of a pair had to be alive in 1961 in order to be included [11]. The cancer
follow-up extended from 1961 to 1995, so 1995 is the year of right censoring.
The year of birth and the zygosity is known for every twin pair. For individuals who died

during the observation period (1961–1995) the year of death is included in the data, as is the
year of diagnosis for individuals with prostate cancer.
There is information about 9264 individuals, that is, 4632 pairs (1649 monozygotic, 2983

dizygotic). For 624 individuals a cancer diagnosis was registered (6.7 per cent). The mean
age at cancer diagnosis is 73.6 years (standard deviation 7.4 years).
Table I shows the proportions of pairs where for no twin, one twin or both twins a cancer

diagnosis is registered for the di�erent zygosities. The proportion of pairs with two a�ected
twins is higher for monozygotic twins. This could be an indication of genetic in�uences.
Four di�erent types of observation are possible for every individual:

1. A person died during the observation period and no cancer diagnosis is registered.
Thus only the year of death is known for this person.

2. A person died during the observation period and a cancer diagnosis is registered. Then
the year of diagnosis and the year of death are known.

3. A person is still alive at the end of the observation period and there is no cancer
diagnosis. Then one only knows the censored life span.

4. A person is still alive at the end of the observation period and there is a cancer
diagnosis. Then one knows the censored life span and the year of diagnosis.

Tables II and III show the cross-tabulation of these types of observation in a twin pair for
monozygotic and dizygotic twins. In the majority of pairs both members are deceased and do
not have a cancer diagnosis.
The data provide more information than the type of data described in Section 3.2, since

there is information about the year of diagnosis, which could be interpreted as year of onset
of disease. For every individual the censored life span is used in the analysis and for people
with a diagnosis of cancer the age at onset of disease is used. For individuals without a
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Table II. Proportions of di�erent types of observations for MZ twins in per cent (1= deceased
without cancer diagnosis, 2=deceased with cancer diagnosis, 3=alive without cancer diagnosis,

4=alive with cancer diagnosis).

Twin 1\twin 2 1 2 3 4 Total

1 46.6 3.7 10.6 0.2 61.0
2 2.9 0.8 0.7 0.2 4.6
3 11.6 1.0 19.0 1.0 32.6
4 0.5 0.4 0.7 0.1 1.8
Total 61.6 6.0 30.9 1.5 100.0

Table III. Proportions of di�erent types of observations for DZ twins in per cent (1= deceased
without cancer diagnosis, 2=deceased with cancer diagnosis, 3=alive without cancer diagnosis,

4=alive with cancer diagnosis).

Twin 1\twin 2 1 2 3 4 Total

1 43.9 3.8 11.7 0.9 60.3
2 3.4 0.3 1.0 0.1 4.8
3 13.0 1.0 18.6 0.6 33.2
4 0.9 0.1 0.8 0.0 1.8
Total 61.2 5.1 32.1 1.6 100.0

diagnosis of cancer who are deceased at the end of the observation period, the fact that their
age at diagnosis is greater than their age at death is included. The risk of death and the
risk of getting cancer are two competing risks here. Finally, individuals who are still alive at
the end of the observation period and who do not have a diagnosis of cancer contribute
with the information that they can only have a diagnosis before the beginning or after the
end of the study.

4.2. Methods

The data are pairwise left truncated since both twins in a pair had to survive the year 1961.
For this reason the usual Kaplan–Meier estimator is not appropriate for the estimation of the
survival function SL. Thus we could not use the semi-parametric approach and a parametric
speci�cation had to be chosen for S0 as well as for SL.
First we did a separate analysis for monozygotic and dizygotic twins, �tting combinations

of six di�erent parametric speci�cations for the univariate survival functions S0 and SL to the
data. All these speci�cations were submodels of

S(x)=e−dx[1 + s2H (x)]−1=s
2
with H (x)=

a
b
(ebx − 1) + cx (3)

The survival function S in (3) is derived by using the conditional hazard rate �(x; Z)=Z(aebx+
c)+d. This model is a combination of the gamma–Makeham parameterization �(x; Z)=Zaebx+
d and the Gompertz–Makeham parameterization �(x; Z)=Z(aebx+ c). Both parameterizations
have been used in lifetime data analysis [6].
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Let S1 denote the submodel of (3) with c=0, d=0 and s2=�2 (variance of the corre-
sponding frailty variable) and S2 denote the submodel with c=0 and d=0.
We determined maximum likelihood estimates of the parameters of the four-dimensional

frailty distribution and of the univariate survival functions. The best �tting model was chosen
according to the Akaike information criterion (AIC). The corresponding parametric speci�ca-
tions of S0 and SL were used in the following analysis.
We then carried out a joint analysis of all data, in which the same parameters were estimated

under the assumption of equal marginal distributions for monozygotic and dizygotic twin
individuals.
Finally, we did the genetic analysis. Six di�erent genetic models were explored: ACE; AE;

ADE; DE; DCE; CE; E. A refers to additive genetic e�ects, D to genetic e�ects due to
dominance, C to shared environmental factors and E to non-shared environmental factors. Let
a2 denote the proportion of variance associated with additive genetic e�ects. This is called
narrow sense heritability. d2, c2 and e2 are de�ned similarly as proportions of the pheno-
typic variance associated with the corresponding genetic or non-genetic e�ects. In quantitative
genetics one generally assumes that for a phenotypic trait the correlations between monozy-
gotic and dizygotic twins can be expressed as

%MZ = a2 + d2 + c2

%DZ = 1=2a2 + 1=4d2 + c2

and that the normalizing equation

1=a2 + d2 + c2 + e2

holds. Since only three of the parameters a2, d2, c2 and e2 are determined by these equations,
one can only look at the seven genetic models mentioned above.
A detailed description of the methods of quantitative genetics can be found in McGue

et al. [7] or Neale et al. [8].
The four-dimensional frailty model allows for the joint genetic analysis of the frailty in

becoming ill and the frailty in dying. One can thus combine the seven genetic models and
can carry out the estimation procedure for a total of 49 di�erent models. Since these models
are not nested, the best-�tting one was chosen using the Akaike information criterion.

4.3. Results

For monozygotic twins the parametric speci�cations S1 for S0 and S2 for SL �tted best
according to AIC. For dizygotic twins a model with the parametric form S2 for S0 and SL
provided the best �t. The parameter estimates and their standard errors are given in Table IV.
In the joint analysis we chose the parametric speci�cation S2 for all univariate survival

functions. Assuming equal values for �0, �, %, s0, a0, b0, s1, a1 and b1 for monozygotic and
dizygotic twins, respectively, yields the estimation results given in the rows ‘MZ and DZ’ of
Table IV.
The genetic analysis of the data remains as the last step. For the possible 49 combinations

of the seven di�erent genetic models, we calculated maximum likelihood estimates for �0,
�, %, the parameters of S0 and SL and for the genetic parameters. Again, the AIC was used
to determine the best-�tting model. It turned out that a DE model for the transition from
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Table IV. Results of separate and joint analysis. Estimators of the variances and correlations of the
frailty variables and of the parameters of the univariate survival functions S0 and SL together with their

standard errors (in brackets).

�0 � %0 %1 % %∗

MZ 3.904 1.687 0.321 0.496 0.379 0.093
(0.673) (0.112) (0.085) (0.041) (0.062) (0.045)

DZ 3.011 2.546 0.037 0.147 0.762 0.031
(0.540) (0.213) (0.063) (0.026) (0.143) (0.054)

MZ and DZ 2.741 2.023 0.231MZ 0.429MZ 0.656 0.120MZ

(0.436) (0.127) (0.092) (0.036) (0.111) (0.069)
0.042DZ 0.184DZ 0.031DZ

(0.066) (0.029) (0.049)

s0 a0× 109 b0 s1 a1× 105 b1

MZ — 0.288 0.252 0.260 2.032 0.105
— (0.474) (0.026) (0.133) (0.614) (0.005)

DZ 1.592 1.832 0.227 0.321 1.925 0.106
(0.285) (2.050) (0.018) (0.080) (0.412) (0.003)

MZ and DZ 1.886 2.783 0.216 0.298 1.988 0.106
(0.335) (2.323) (0.013) (0.069) (0.350) (0.003)

healthy to ill (d2=0:22 (0:09)) and an AE model for the transition from healthy to deceased
(a2=0:42 (0:03)) was the best-�tting combination.

4.4. Discussion

The analysis of the Swedish twin data on prostate cancer suggests that there is genetic in-
�uence on frailty in the development of the disease, which is due to dominance e�ects. The
genetic in�uence on the frailty corresponding to the life span is moderate and results from
additive genetic e�ects.
The latter result con�rms that derived by Yashin et al. for Danish twins [1].
The �ndings from the prostate data must be judged critically, however. First, using the

year of diagnosis to calculate the age at onset of disease is a questionable procedure. Second,
only the years of birth and death are known in the data, which introduces a certain degree of
inaccuracy. Third, the number of a�ected people, that is, the number of people with a cancer
diagnosis, is small. This means that the estimators of the parameters for the transition from
healthy to ill have large errors, so one should be careful with the interpretation of them.
Ahlbom et al. [9] applied traditional methods of quantitative genetics on the same data set

about prostate cancer. They estimated correlations of liability and the relative risk of cancer for
twins with an a�ected co-twin compared with twins with a non-a�ected co-twin. They found
that ‘prostate cancer displays a clear familial e�ect that is almost accounted for by heritable
e�ects’ and an indication of non-additive heritable e�ects. In the paper the limitations of the
data set are discussed thoroughly.
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Another study of prostate cancer in Swedish twins by Gr�onberg et al. [10] used other
statistical methods (calculation of concordance rates and correlation of liability) but it also
found that ‘genetic factors might be important in prostate cancer development’ on the basis of
di�erences in proband concordance rates and correlations in liability between monozygotic and
dizygotic twins. They calculated correlations of liability of 0.40 and −0:05 for monozygotic
and dizygotic twins, respectively. The corresponding estimates of the correlation between the
frailty variables in�uencing the transition from healthy to ill are 0.23 and 0.04, respectively
(see Table IV, estimates for %0). These values are of the same magnitude.
Applying the traditional method of calculating tetrachoric correlations in liability on the data

described in Section 4.1 would mean that one only uses the information given in Table I. In
doing this one ignores, on the one hand, the fact that some of the living twins might still
receive a diagnosis of cancer after the end of the study and, on the other hand, one does
not use the additional information about the age at onset of the disease. All these facts are
accounted for in the model that we use.

5. CONCLUSIONS

The present paper introduces a new model for the genetic analysis of the ageing process. It
allows for a more sophisticated view of this process since it combines information about life
span with information about health.
The model is complex, which means that it places higher demands on the quality of data.

To carry out a meaningful analysis one needs relatively large sample sizes and a relatively
high proportion of individuals in an ill state.
The main advantages of the model are that the health information (current health status)

that is needed for identi�ability is relatively easily available and that it is possible to include
groups of individuals with some or all members deceased.
The use of a non-parametric estimate of the survival function corresponding to the life

span allows for the avoidance of parametric speci�cations, which normally cannot be justi�ed
from a biological or medical point of view. In situations where it is not appropriate to use a
non-parametric estimate of this survival function due to the mechanism of data ascertainment,
one has to use a parametric speci�cation. Such a parameterization could be chosen according
to practical experience in lifetime data analysis, and it should be general in the sense that
one can compare the �t of di�erent submodels while �xing some of the parameters at zero.
A sample analysis of prostate cancer data using this model con�rmed the results of other

studies that examined either life span or the disease itself.
A future task for the further investigation of the model could be the development of a non-

parametric estimator for the survival function corresponding to the transition from healthy to
ill that can be calculated on the basis of the current health status data.

APPENDIX: PROOF OF PROPOSITION 3.1

If one only looks on the censored bivariate life span information of every twin pair then one
can apply the identi�ability in the bivariate correlated frailty model and get that of �, %1 and
SL(x) for a6x6b.
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The information about every individual (censored life span+health status) involves the
uniqueness of the function

ST (x; x)=P(Ti0¿x; Ti¿x) for a6x6b (A1)

The calculation of the likelihood function for the described type of censored data shows that
the functions

S(x; x; x; x) for a6x6b (A2)

S(0; x; x; x) for a6x6b (A3)

and

@S(x1; x2; y1; y2)
@y1

∣∣∣∣ x1 =0;
x2 =y2 = x

for a6y16x6b (A4)

are uniquely determined. The uniqueness of (A2) from that of the sub-density of the pairs
where both twins are healthy, that of (A3) from the identi�ability of the sub-density of the
pairs where one twin is healthy and one twin is ill and �nally follows the uniqueness of (A4)
from that of the sub-density of the pairs where one twin is healthy and the other is deceased.
Since for every function f

df(x)
dx

=f(x)
d lnf(x)
dx

and
d2f(x)
dx 2

=f(x)

([
d lnf(x)
dx

]2
+
d2 lnf(x)
dx 2

)

applying (A2), (A3) and (A4) yields that the functions

g1(x)=
@
@y1

ln S(x1; x2; y1; y2)
∣∣∣∣ x1 =0;
x2 =y1 =y2 = x

and

g2(x)=
@2

@y21
ln S(x1; x2; y1; y2)

∣∣∣∣ x1 =0;
x2 =y1 =y2 = x

are identi�able for a6x6b. Using the uniqueness of SL and its derivatives one can conclude
from the explicit representation of functions g1 and g2 that the functions

h1(x)=%∗
�
�0

{[S−�200 (x) + 2S−�
2

L (x)− 2]−1 − [2S−�2L (x)− 1]−1}

and

h2(x)=%∗
�
�0

{[S−�200 (x) + 2S−�
2

L (x)− 2]−2 − [2S−�2L (x)− 1]−2}

are identi�able for all x with a6x6b, SL(x) �=0 and S ′L(x) �=0. S−�
2
0

0 (x) and %∗

�0
can be uniquely

calculated as solutions of this system of non-linear equations for all x∈[a; b] with 0¡SL(x)¡1,
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S ′L(x)¡0 and 0¡S0(x)¡1. Taking into account the so far derived results and calculating the
unique function ln S(x; x; x; x)− 2 ln ST (x; x) yields the identi�ability of %0

�20
.

The known function ln ST (x; x)− ln SL(x) yields for two di�erent x1; x2∈[a; b] a system of
linear equations with unique coe�cients for 1

�20
and %

�0�
. If the determinant of the matrix of

coe�cients is unequal to zero for at least one pair of distinct numbers in [a; b] then 1
�20
and

%
�0�

and therefore also �0 and % are uniquely determined. The identi�ability of %0, %∗ and
S0(x) for all x∈[a; b] is then obvious.
The determinant can only be zero for all x1; x2, a6x1¡x26b, if there exists a constant c,

0¡c¡1, such that

S−�
2

L (x)=
S−�

2
0

0 (x)− 1
S−c�

2
0

0 (x)− 1
(A5)

for all x∈[a; b] with 0¡S0(x)¡1.
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